Flexi-Course Book # Technical English Students' Book and Workbook David Bonamy Christopher Jacques # Contents Review Unit F p.96 | ations | 7.1 Dimensions p.52 | Specifying dimensions Using a specifications chart | How long is it? It's 9 mm long.
The length of the road is 120 km. | Bridge parts: deck, pier, pylon
Adjectives/nouns: long/length, high/height
Linear and weight: mm, m, kg | | |---------------------------------|--|---|---|--|--| | Unit 7 Specifications | 7.2 Quantities p.54 | Specifying materials
Buying materials for a job
Using a materials checklist | Countable and uncountable nouns
I'd like some paint, please. | Substances: glue, cement, oil
Containers: tube, tin, bag
Area and volume: m², m³, litre | | | Unit | 7.3 Future projects
p.56 | Describing plans for the future
Using a Gantt chart | will, won't
Time expressions: in 2015, at the end of 2015 | Verbs: attach, complete, connect | | | | 8.1 Recent incidents
p.58 | Taking an emergency call
Explaining what has happened
Checking on progress | Present perfect
I've checked the brakes.
Have you checked the tyres? | Car repair: brakes, exhaust pipe
Building site: beam, bucket, digger | | | Unit 8 Reporting | 8.2 Damage and loss
p.60 | Reporting damage
Dealing with a customer | Past participles as adjectives: It's broken.
They're dented.
There are some scratches on the screen.
There's no user manual. | Electrical: antenna, plug
Damage: bent, broken, dented
Loss: missing | | | Ē | 8.3 Past events p.62 | Discussing past events
Phoning a repair shop | Past simple They launched it in 2006. Time expressions: in 2008, on 5th October, fifty years ago | Time: today, yesterday, a week ago
Revision of dates and years
more than, less than | | | Review | Unit D p.64 | | | | | | | 9.1 Operation p.68 | Explaining how things work
Explaining what things do | Revision of present simple The handlebar steers the airboard. | Verbs: control, drive, press Parts: body, lever Connections: attached to, mounted on | | | Unit 9 Troubleshooting | 9.2 Hotline p.70 | Listening to an automated phone message
Using a service hotline
Taking a customer through a problem and
solution | Is the computer connected to the adapter?
Short answers: Yes, I have. No, it doesn't.
Yes, it is. | Electronics and computing: RF/SCART socket, router, modem Connections: connected to | | | Unit 9 | 9.3 User guide p.72 Using a flow chart Using a troubleshooting guide | | Zero conditional + imperative If it doesn't start, check the cable. | Electronics: LED, loose (cable)
Computing: disk drive, printer
Car repair: flat (battery) | | | ıt, | 10.1 Rules and
warnings p.74 | Following safety rules
Giving and following warnings
Using safety signs | could, might, must
Always Don't You mustn't
You might trap your hand. | Safety gear: hard hat, gloves
Hazards: poison, danger
Accidents: hurt, injure, trap
Shapes: circular, round | | | Unit 10 Safety | 10.2 Safety hazards
p.76 | Giving and following warnings
Noticing safety hazards
Reporting safety hazards | Past tense of be
The fire exit was locked.
There were no fire extinguishers. | Hazard nouns: gap, bare wire
Hazard adjectives: coiled, damaged, locked
Safety: fire exit, safety cone | | | | 10.3 Investigations
p.78 | Investigating an accident Reporting an accident Giving, accepting and turning down an invitation | Questions in the past simple
Where? When? How high? What? How far?
How many? | Nouns on a form: position, altitude, distance | | | Reviev | V Unit E p.80 | | 100 | | | | ind effect | 11.1 Pistons and
valves p.84 | Expressing causation, permission and prevention
Explaining how a four-stage cycle works | Verb constructions cause, allow + to infinitive make, let + bare infinitive stop, prevent + from + gerund | Hydraulics: chamber, inlet, outlet | | | Cause and | 11.2 Switches and relays p.86 | Explaining how a relay circuit works
Giving an oral presentation | Further practice of verb patterns in 11.1 | Electrical: battery, buzzer, earth | | | Unit 11 | 11.3 Rotors and
turbines p.88 | Explaining how a wind turbine works
Giving an oral presentation
Making suggestions | Further practice of verb patterns in 11.1
Reference words: it, one | Turbines: blade, brake, gear
Verbs: drive, rotate, send | | | ng and | 12.1 Data p.90 | Describing specifications Expressing approximation Checking that data is correct | Revision of question forms
Is that correct? No, that's wrong. | Approximation: about, over, at least
Nouns: mass, rotation | | | Unit 12 Checking and confirming | 12.2 Instructions
p.92 | Following spoken instructions
Confirming actions
Describing results of actions | Revision of imperative with present continuous | Revision of controls, vehicles, direction adverbs, verbs of movement | | | Unit | 12.3 Progress p.94 | Describing maintenance work
Checking progress with a Gantt chart | Revision of present perfect, past simple, present continuous, and will | Maintenance and repair: check, inspect, assemble | | Grammar summary p.100 Reference section p.108 Extra material p.112 Audio script p.116 Workbook follows p.122 # Specifications #### 1 Dimensions Start here - 1 What do you know about this bridge? - 1 What's it called? - 2 Where is it? - 3 How high is it? Listening - 2 39 Listen to part of a TV programme about the bridge. Check your answers to 1. - 3 Work in pairs. Which of the following can you see in the photo? cable deck pier pylon span 4 Section 40 Listen to the next part of the TV programme and complete the specifications of the bridge. Don't add -s to abbreviations of units: say: one hundred metres / killometres; write: 100 m /100 km BrE: metre, millimetre, centimetre. AmE: meter, millimeter, | Millau Bridge: specificati | ons | | | | |----------------------------|-------------------|-----------------------------|------|----| | Structure | (1) cable-stayed | Length of outer spans | (7) | m | | Completion date | (2) December 2004 | Number of piers | (8) | | | Material: cables and deck | (3) | Height of pylons above deck | (9) | m | | Material: piers | (4) | Height of deck above water | (10) | m | | Total number of spans | (5) | Length of deck | (11) | km | | Length of inner spans | (6) m | Width of deck | (12) | m | #### Vocabulary 5 Complete the table. | Adjective | high | long | | wide | |-----------|------|------|-------|------| | Noun | | | depth | | - 6 Complete the sentences with the correct word in brackets. - 1 The _____ of the road is 6 m. (wide/width) - 2 The river is 230 km ______ (long/length) - 3 The sea has a ______ of 330 m. (deep/depth) - 4 These pylons are over 80 m ______ (high/height) - 5 These oil wells are more than 700 m ______ (deep/depth) - 6 The total _____ of the road is about 120 km. (long/length) - 7 The tunnel is 15 m ______ (wide/width) - 8 The _____ of the bridge is 130 m. (high/height) #### Language | How high wide long deep | is it?
are they? | It's
They're | 2
10
100
1000 | millimetres
centimetres
metres
kilometres | high.
wide.
long.
deep. | |-------------------------|---------------------|-----------------|------------------------|--|----------------------------------| |-------------------------|---------------------|-----------------|------------------------|--|----------------------------------| #### Speaking - 7 Make questions about the Millau Bridge. Use the specification chart in 4. - 8 Work in pairs. Ask and answer your questions in 7. Example: TV presenter: How long are the inner spans? Engineer: They're 342 metres long. #### Task 9 Work in pairs. Find out the specifications of your partner's bridge. Student B. Turn to page 114. Student A: - Ask Student B questions about the Akashi-Kaikyo Bridge. Complete your specifications chart. - Then change roles. Turn to page 112 and answer Student B's questions about the Rion-Antirion Bridge. | Akashi-Kaikyo Bridge: specifications | | | |--------------------------------------|------------|--| | Type of structure | Suspension | | | Country | | | | Piers (number) | | | | Span (length) | | | | Deck (above water) | | | | Deck (length) | | | | Water (max depth) | | | | Water at main pier (depth) | | | #### 2 Quantities Start here 1 Try the quiz. Match the names of the buildings to the pictures. Write the number and the approximate height of each building. - A Dubai Towers Doha, Qatar - (Picture # ____; height ____ B Federation Tower, Russia - (Picture # _____; height _____ m) C Abraj Al Bait Towers, Saudi Arabia - (Picture # ____; height _____ m) D Sears Tower, USA - (Picture # ____; height ____ - E Petronas Towers, Malaysia (Picture # ______; height ______ - F Taipei 101, Taiwan (Picture # _____; height _____ - G Shanghai World Financial Centre, China (Picture # _____; height _____ m) - 2 541 Listen and check your answers to 1. Reading 3 Read the FAQs from the website and match them to the answers. BrE lift = AmE elevator write: 8000 m*, say: eight thousand square metres. write: 250,000 m*, say: two hundred and fifty thousand cubic metres. write: 5 kg, say: five kilograms or five kilos. 4 2 6 4 This is Taipei 101. It is currently the highest in the world. Here are some frequently asked questions (FAQs) about the building. - 1 How high is Taipei 101? - 2 What's the footprint of the building? - 3 How many
storeys does it have? - 4 How do you get to the top? - 5 What's the building made of? - 6 How much steel and concrete is in the building exactly? - A About 700,000 tonnes. - B By super-fast elevator. The building has two high-speed elevators. Each elevator travels at 17 m/s. - C 101. - D It towers above Taipei at the amazing height of over 508 metres. - E Reinforced concrete, steel, aluminium and glass. - F The base of the building has an area of about 450 m². Language Countable nouns can be both singular and plural. Examples: screw, nail, bottle. Uncountable nouns are always singular. Examples: concrete, cement, sand, oil. | screws are countable | | | cement is uncountable | | | |-------------------------|-------|----|-------------------------|--------|--| | a
one | screw | | | | | | some
two | screw | -8 | some | cement | | | a bag of
two bags of | | | a bag of
two bags of | | | | Danis | | screws? | How | many | (screws) | do you need? | |-------------|----------|---------|-----|------|----------|--------------| | Do you need | some/any | cement? | How | much | (cement) | do you need? | 4 Complete the dialogue with the words in the box. any how many much some What colour What size - Good morning. Can I help you? - O Hello. Do you have (1) ______ screws? - Certainly. (2) ______ do you need? - Ten mil. - OK. And (3) ______ do you need? - O Fifty, please. - Right. So that's fifty 10 mil screws. Anything else? - Yes. I need to buy (4) ______ paint, please. - (5) ______? - O Black. - OK. So (6) ______ black paint do you need? - Six large tins, please. - Anything else? - No, that's all, thanks. - Make similar dialogues with your partner. Use the questions in the box and the information from the table. How many? How much? What colour? What kind? What size? What type? | To buy | | | | | | |--------|-----------------|----------------------|--|--|--| | Item | Quantity | Kind, size or colour | | | | | screws | 50 | 10 mm | | | | | paint | 6 large tins | black | | | | | glue | 2 tubes | superglue | | | | | nuts | 30 | 15 mm | | | | | oil | 15 L | motor oil | | | | | bolts | 60 | 25 mm | | | | | cement | 20 bags | white | | | | | nails | 2 packets of 50 | 20 mm | | | | # 3 Future projects #### Start here - 1 Work in pairs. Look at the picture. What is it? How does the vehicle move? - 2 Listen to this radio interview and complete the specification chart. | Trans-Atlantic MagLev Tube | | | | | | |-----------------------------|---------|--|--|--|--| | Location of tube | (1) Una | der the Atlantic Ocean from Britain to the USA | | | | | Possible date of completion | (2) 210 | 00 | | | | | Length | (3) | km | | | | | Depth below sea level | (4) | m | | | | | Number of cables | (5) | | | | | | Speed of train | (6) | km/h | | | | | Source of power for train | (7) | | | | | #### Use will and won't to predict a future fact or event. Language will They/We 11 build it in 2050. My company will not The engineers won't build it? In 2050. When will they/you build it in 2050? Yes, they will. / No, they won't. Will - 3 Disagree with each statement. - 1 The engineers will start the tube in 2020. (2080) - 2 The tube will be under the Pacific Ocean. (Atlantic) - 3 The tube will connect Britain with Europe. (the USA) - 4 The train will use diesel. (magnetism) - 5 The tube will contain compressed air. (a vacuum) - 6 The trains will travel at 11,000 km/h. (8000 km/h) Example: 1 They won't start the tube in 2020. They'll start it in 2080. # Reading 4 Read this interview and produce a specifications chart for the bridge (see 2 on page 56). Use the words in the box. completion date deck height length materials pier pylon span # Bridge of the Future: # **Europe-Africa Bridge** RadioTech presenter Tom Burns interviews engineer Galal Hamdy. Tom: What project are you working on now? Galal: We're designing the world's longest bridge. Tom: Where will it be? Galal: Between Morocco and Spain. It'll connect Europe with Africa. Tom: What are the specifications of the bridge? Galal: It will be almost 15 km long. In our design, the bridge will have two spans. Each span will be 4800 m long. Tom: That's a very long span. How will that be possible? Galal: The bridge will have three steel pylons, on concrete piers. The pylons will be 1000 m high. The deck will be very light and strong. It'll be made of fibreglass. Tom: Many engineers think you won't be able to build this bridge. Galal: I don't agree. I think we'll complete it around 2030. ## Speaking - 5 Work in pairs. Ask and answer questions about the specifications of the bridge. - A: How long will the bridge be? - B: It will be almost 15 km long. - 6 Here is a possible project schedule for the Europe-Africa Bridge. Roleplay an interview between a TV presenter and an engineer. | Task | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | |---------------------------|------|------|------|------|----------|------|------|------|------| | 1 lay foundations | | | | | | | | | | | 2 build piers | | | | | | | | | | | 3 put pylons on piers | | | | | ace of t | | | | | | 4 attach cables to pylons | | | | | | | | | | | 5 make deck | | | | | | | | | | | 6 fix deck to cables | | | | | | | | | | | 7 build roads | | | | | | | | | | | 8 open bridge | | | | | | | | | | TV Presenter: When will you build the piers? Engineer: We'll start in 2026 and finish in 2027. #### Social English 7 How do you think the world will change in the next 20 years. Think about technology, social, political and legal changes. Example: Computers will control more things in our homes. # Reporting # 1 Recent incidents #### Start here - 1 Work in pairs. Look at the photo and say what's happening. List five common problems you can have with a car. - 2 Listen to this phone call and complete the details in the form. #### Listening 3 Listen to the phone calls and match them with the pictures. Complete the sentences with the verbs in the box. Put two words in each gap. broken cut driven fallen had happened have/has lost taken 1 Is that Security? Thieves <u>have broken</u> into my office. They ______ my computer. 2 Is that the IT hotline? Something ______ to my computer. I ______ all my data. 3 I need an ambulance, quickly. My daughter _____ downstairs. > her leg. 4 Is that Crash Recovery? I ______ an accident. I _____ my car into a bridge. #### Language You form the present perfect with have/has + past participle. - You can use the present perfect to talk about recent actions: My car has broken down. I've changed the tyre. - The present perfect does not go with dates, times or time expressions such as yesterday, a week ago, in 2005. Use the past simple with these expressions. - 5 Check you know the past participle of these verbs. Which ones are irregular? buy check crash fall order put repair sell send speak steal take write # Speaking 6 Work in pairs. Make short dialogues. A is the supervisor in a car repair workshop. B is a mechanic in the workshop. - 1 check the brakes ✓ repair the tyres X - 2 order those new parts ✓ buy those tools X - 3 change the tyres ✓ clean the spark plugs ✗ - 4 phone the customer x speak to our supplier √ - 5 write that report ✓ send that email X - 6 put in the new fuses X take out the old lamps ✓ - A: Have you checked the brakes? - B: Yes, I have. - A: Good. What about the tyres? Have you repaired them? - B: No, I haven't. I'll do it now. ## 7 Try this memory test. - Look at the picture on page 113 for one minute. - Then look at the picture below. How many differences are there? Compare with a partner. 8 It is now 10.16 am. Explain what has happened in the picture since 10:12 am. Use the words and verbs in the box. beam bricks bucket builder crane digger hard hat jacket scaffolding sledgehammer climb down drive fall over lower move back pick up put put on raise take off Example: 1 Two builders have taken off their jackets. # 2 Damage and loss Start here 1 Do you have any damaged tools or equipment? Describe the damage to your partner. Vocabulary 2 Do you remember the verbs in the box? Match them with the pictures. bend break burn crack cut dent scratch tear Task 3 Correct the mistakes in this checklist. # **Quick Start guide** Check all these items are in the box and in good condition. If any items are damaged or missing contact Customer Services immediately. | item | in box | condition | |-----------------------------------|-----------|-----------| | radio | 1 | damaged | | radio antenna | | OK | | body of radio | | cracked | | display screen | | OK | | power cable with plug | no plug | cable OK | | 4 AA batteries | 1 | OK | | 1 user manual | no manual | - | | 1 pair headphones | 1 | OK | | 1 LH external speaker | 1 | OK | | 1 RH external speaker | 1 | OK | | 2 cables for speakers | 1 | OK | Listening 4 Look at the picture in 3. Listen to the telephone conversation and check the list. **Speaking** 5 Look at the picture in 3 again. Make sentences about the damage and the things that are missing. Use these sentence patterns. | Ways to report damage | Ways to report something missing | | | | |----------------------------------|--|--|--|--| | The screen is scratched. | The manual is missing. | | | | | There's a scratch on the screen. | There's no manual in the box. | | | | | The speakers are dented. | The cable has no plug. / The cable doesn't have a plug | | | | | There are some dents on the | There's no plug on the cable. | | | | | speakers. | | | | | | Language | Focus on action | | | Focus on result of action | | | |----------|-----------------|--------|---------------|---------------------------|------------|---------| | | I have | dented | the radio. | The radio | is dented. | | | | He has | broken | the speakers. | The speakers | are | broken. | past participle 6 Rewrite the sentences in the same way as in the table above. | Fo | ocus on action | Focus on result of action | |----
--|---------------------------| | 1 | I've scratched the display screen. | | | 2 | Someone has bent the antenna. | | | 3 | I've burnt the body of the radio. | | | 4 | Someone has dented the top of the speaker. | | | 5 | They've cracked the cover of the plug. | | | 6 | Someone has torn the user manual. | | 7 Complete the sentences with the correct form of the words in the box. bend crack cut dent scratch tear adjective - The side of the box is 1 - 2 The lenses of the goggles are ______ - 3 The surface of the road is ______. - 4 The insulation of the cable is _____ - The pipe below the tank is _____ - 6 The overalls are ____ - 8 Rewrite the sentences in 7 to give the same meaning. There's a / There are some Example: 1 There's a dent in the side of the box. Task Work in pairs. Find out the damage to your partner's car. Student A: Ask Student B questions about the damage to their car. Label your diagram. 2 Then change roles. Turn to page 112. Student B. Turn to page 114. - What's the problem? - The door is scratched. - Which door? - The back / front nearside one. - Anything else? front ≠ rear The steering wheel is always offside. boot #### 3 Past events ## Start here 1 Work in pairs. When did these events happen? Give the approximate year of the first ... - l space station 6 spacewalk - 2 telescope in space 7 man on the Moon 3 man in space 8 shuttle in space - 4 space tourist 9 crew to enter the International Space Station - 5 satellite 10 European navigation satellite ## Reading 2 Read this chart and check your answers to 1. # Language This is the past simple form of the verb. - You can use it to talk about past events. - Use the past simple with dates, times or expressions such as: yesterday, last year, When? | When | did | he/she/it/they/we/you | go
travel | there? | | | |------|-----|-----------------------|-------------------|--------|----------|--| | | | He/She/lt/They/We/You | went
travelled | there | in 2007. | | #### Speaking - 3 Make questions and answers about the table in 2. - A: When did the Russians launch Sputnik? - B: They launched it on the 5th of October 1957. (or: They launched it in 1957.) Use on for the exact day: on the 14th of May 2005. Use in for a month or a year: in May; in 2005. #### Vocabulary ago = before now You can say the fifteenth of November or November the fifteenth. more than 50 = less than 50 If it is the 15th of November today ... - two days ago = 13th November - two weeks ago = 1st November - two months ago = 15th September - If it is 10.15 now ... - five minutes ago = 10.10 - an hour ago = 9.15 - two hours ago = 8.15 - Write the name of this month on the calendar. Put a circle round today's date. Then say what the following dates are. - 1 today - 2 yesterday - 3 the day before yesterday - 4 two days ago - 5 one week ago - 6 two weeks ago 5 Make statements about the chart in 2 using ago and approximate years from today's date. Example: 1 The Russians launched Sputnik more than 50 years ago. - 6 Listen and complete the phone call. - Hello, Electronic Repairs. Don speaking. How can I help you? - O Hi. My name's Ben Jones. I've (1) ______ my MP3 player. Can you repair it? - OK, sir. What's the model number? - It's a Super 30 GB. - And when did you (2) _____ it? - Er, let's see ... Yes, I (3) ______ it on the 18th of August. - And what's the problem? - I've (4) ______ it and I've (5) _____ the screen. - And, er ... when did you (6) _____ the screen? - Yesterday. - OK, bring it into the shop and I'll look at it. - Thanks. Bye. - 7 Work in pairs. Make similar phone calls. | | Item 1 | Item 2 | Item 3 | |-------------------|----------------|----------------------|-----------------------| | Item: | MP3 player | mobile phone | laptop | | Model no: | 60 GB | 9300 | Travel 380 | | Date of purchase: | 15th February | 13th October | 21 st July | | Damage: | dented cover | dropped in water | broken cover | | Date of damage: | three days ago | day before yesterday | two weeks ago | #### Social English - 8 Make a list of interesting things you have done in your life, with their dates. - climbed Mont Blanc in June 2006 - snorkelled in the Red Sea in August 2007 - 9 Tell other students in your class about your list. # Review Unit D | 1 | | ake questions for these answers. | | | | | | | | |---|----|---|--|--|--|--|--|--|--| | | 1 | It's about 50 m wide. (the road) How wide is the road? | | | | | | | | | | 2 | They're 90 m high. (the pylons) | | | | | | | | | | 4 | They re 50 in high. (the pylons) | | | | | | | | | | 3 | It's more than 2 km long. (the deck of the bridge) | | | | | | | | | | 4 | It's about 35 m in height. (the scaffolding) | | | | | | | | | | 5 | They're 15 m deep. (the foundations of the building) | | | | | | | | | | 6 | They're about 12 m in length. (the steel beams) | | | | | | | | | 2 | Ch | nange these nouns to adjectives | | | | | | | | | | 1 | depth 3 width | | | | | | | | | | 2 | height 4 length | | | | | | | | | 3 | Re | Rewrite the sentences to give the same meaning. | | | | | | | | | | 1 | What is the height of the bridge? 4 The length of the new road is 355 km | | | | | | | | | | | How high is the bridge? This new road is | | | | | | | | | | 2 | The height of the tower is 46 m. $$ | | | | | | | | | | | The tower is How | | | | | | | | | | 3 | What is the depth of the sea 6 The depth of the well is more under the bridge? 6 The depth of the well is more than 30 m. | | | | | | | | | | | How The well is | | | | | | | | | | | ? | | | | | | | | | 4 | M | ake questions for these answers. | | | | | | | | | | 1 | It has ten. (storeys / building) | | | | | | | | | | | How many storeys does the building have? | | | | | | | | | | 2 | He needs 20 kilos. (cement / builder) | | | | | | | | | | 3 | They're using two. (cranes / men) | | | | | | | | | | 4 | It needs about 4 litres. (oil / car) | | | | | | | | | | 5 | I'm buying 150. (screws / you) | | | | | | | | | | 6 | They can carry about 50 cubic metres. (concrete / ten trucks) | | | | | | | | 5 Read the text. Label the diagram with all the parts and dimensions in italics. This cable-stay bridge has 20 cables. The deck of the bridge is 1.2 km long, and is 185 m above water level. Each pier is 35 m wide. The span between the two piers is 832 m long. Each pylon is 45 m high above the road deck. | 6 Work in pairs. Order what you need to build the Burj Dubai sk | kyscraper. | |---|------------| |---|------------| trucks / 40,000 cranes / 3 steel poles / 12,000 concrete / 150,000 m³ steel / 25,000 tonnes aluminium / 15,000 tonnes - A: I need to order some concrete/some trucks. - B: OK. How much concrete/How many trucks do you need? - A: I need #### 7 Complete the dialogue. - Engineers are planning to build a tunnel under the sea. - Where will the tunnel be? - It'll be between Spain and Morocco. - O How long (1) ______ be? - It (2) ______ - How many (3) ______ have? - It (4) _____ - It (6) _____ - • It (8) - O When (9) ______ the engineers ______? - They (10) _____ #### Location: Between Spain and Morocco #### Length: 40 km #### Number of railway lines: • 2 #### Width: • 8 m #### Depth (below sea level): • 300 m #### Completion date: 2025 # 8 Answer these questions. - 1 Did they complete the Millau Bridge in 2000? (2004) No, they didn't. They completed it in 2004. - 2 Have you ever worked in an electronics company? (video shop) - Will they build a bridge from Africa to Europe? (a tunnel) - Are they constructing the tunnel now? (planning and designing) - Has NASA ever put men on Mars? (the Moon) - 6 Did Russia launch the first satellite in 1960? (1957) 9 Rewrite the sentences using the present perfect tense. Remember: don't use a time expression (such as yesterday or an hour ago) with the present perfect. - My car broke down five minutes ago. My car has broken down. - 2 NASA launched the space shuttle fifteen minutes ago. - 3 A virus attacked our office computers two hours ago. - 4 I wrote the email and I sent it to the customer yesterday. - 5 The technician took the hard drive out of the computer an hour ago. - 6 The exhaust pipe fell off my car ten minutes ago. - 10 Look at the pictures. Say what's missing, in three different ways. Example: 1 The wheel has no wheel nuts. / The wheel doesn't have any wheel nuts. / There are no wheel nuts on the wheel. ## 11 Complete the table. | F | ocus on action | Focus on result of action | |---|--|-----------------------------| | 1 | He's dented the front bumper. | The front bumper is dented. | | 2 | You've broken the windscreen. | | | 3 | Someone has burnt the rear seat of the car. | | | 4 | We've bent the poles of the scaffolding. | | | 5 | They've torn the safety jackets. | | | 6 | Someone has scratched the rear panel of the car. | | # 12 Complete the table. | He's bent the antenna. | The antenna is | There's a small | in the antenna. | |--|----------------|---------------------|-----------------| | 2 The fire has burnt the walls. | The walls are | There are two large | on the walls. | | 3 You've cracked the window. | The window is | There are some | in the window. | | 4 I've torn my shirt. | My shirt is | There's a | in my shirt. | - 13 Rewrite these sentences to give the same or similar meaning. - There's a scratch on this cover. - This cover is _____ - 2 There are no wheels on the car. - The car has _____ - 3 The cables don't have any plugs. - There are _____ - 4 The windscreens are cracked. - There are some _____ - 5 There's no workshop manual in this garage. - This garage doesn't _____ - 6 There is a dent in the roof of the car. The roof ___ - The roof - 14 Complete this dialogue
with the correct form of the verb in brackets. - · Where did you buy your safety equipment? - I (1) ______ (buy) it online, over the Internet. - That's good. How did you (2) _____ (find) the website? - I (3) _____ (find) it through Google. I (4) ____ (key) in the words 'safety gear'. - How (5) _____ (you / pay) for it? Did you (6) ____ (use) your own bank card? - No, no. My company (7) ______ (give) me a credit card last week. I (8) _____ (use) that. - That's great. When (9) _____ (you / receive) the goods? - O They (10) _____ (come) yesterday, by express mail. - 15 Write a description of this water tower and how it works. Use the notes below. Projects 16 Choose one of these projects and follow the instructions. - 1 Find out some facts about a famous structure (for example a bridge or building). Write a short article about it for an in-flight tourist magazine. - 2 Design a new bridge, tunnel, or transport link (e.g. railway line or hovercraft route) to connect two places. Find out some facts about the location (for example, the width of a lake, the depth of the lake, the height of the land beside the lake, and so on). Write a short article about it for a technical magazine. - a) Draw a simple diagram of your design. Mark the dimensions. - b) Produce a specifications chart. - c) Write a short description. # Troubleshooting # 1 Operation #### Start here - 1 Work in pairs. How does this vehicle move? Discuss with your partner. - What do the main parts do? Complete the chart. | Part | Function | |------|--------------------------------------| | | drive the fan | | | pull the air in + force the air down | | | control the speed and acceleration | | | steer the airboard | | | support the rider | #### Listening downwards = upwards - 3 Listen and check your answers. - 4 Listen again and complete the dialogue. - Look at the airboard. You can see the five main parts: the body, the engine, the fan, the handlebar and the two levers. The body (1) <u>supports</u> the rider and the engine (2) ______ the fan. The handlebar (3) _____ the airboard left and right. - Ah yes, I see. So what (4) ______ the fan (5) _____? - It (6) ______ it downwards. - O Right. And what (8) ______ the two levers (9) ______? - They (10) _____ the speed and acceleration of the airboard. #### Language | What | does | the engine | | don | It | drive | -s | the fan. | |-------|------|------------|----|-----|------|---------|----|------------| | vvnat | do | the lever | -S | do? | They | control | | the speed. | - 5 Make short dialogues about the parts of the airboard. - 1 fan / cool the engine? no → push air downwards - 2 engine / drive the wheels? no → drive the fan - 3 levers / stop the airboard? no → increase the speed - 4 handlebars / control the brakes? no → steer the airboard - A: Does the fan cool the engine? - B: No, it doesn't. - A: So, what does it do? - B: It pushes air downwards. You stand on the airboard and ride it like a skateboard. The board moves on a cushion of air, like a small hovercraft. It has a fibreglass body, an engine, a large fan, a flexible rubber skirt, a friction wheel, a handlebar and two levers. the body. The skirt and the friction wheel are speed of the engine and the fan. The other suspended from the body. The handlebar is mounted on the body, at the front. The levers are attached to the handlebar. The engine drives the fan. The function of the fan is to suck air in and to force it downwards. This pushes the vehicle 15 upwards and propels it forwards. On the body there is a fibreglass platform. This supports the rider. The skirt contains the air and the cushion of air supports the airboard. The rider uses the handlebar to The engine and the fan are mounted on 20 steer the board. One lever controls the lever controls the friction wheel. The friction wheel touches the ground for one or two seconds and accelerates the airboard into 25 the air. If you want to stop, simply release the levers. - What is the friction wheel for? - Is the skirt above or below the body? What is it made of? Can you bend it? - Which part of the airboard does the rider stand on? - What happens if you take your hands off the levers? - Does propel (line 15) mean pull, push, hold or control? - Find words which mean the opposite of (1) backwards (2) upwards. #### Language - 7 Rewrite the sentences to give the same meaning. - The purpose of the handlebar is to steer the airboard. - The job of those levers is to control the speed of the airboard. - The function of the friction wheel is to accelerate the airboard. - The purpose of the fan and the engine is to propel the airboard forwards. - The function of the skirt is to hold the air and to support the airboard. - The job of the body and the platform is to support the rider. Example: 1 The handlebar steers the airboard. #### Vocabulary - 8 Match the pictures with the sentences. - X is attached to Y. - X is mounted on Y. - 2 X is suspended from Y. - 4 X is connected to Y. Complete these sentences. Use each phrase once only. attached to connected to mounted on suspended from - 1 The huge cables of the Millau Bridge are ______ steel pylons. - The pylons and the road deck are _____ concrete piers. - Close the circuit switch. Now the lamp is ______ the current. - The shelf is ___ the wall with screws. ## 2 Hotline #### Listening 1 Listen to the automated message on the phone. The customer wants to talk to the service technician about a computer problem. Which three keys does the customer press? Hello, you've (1) ______ the computer service hotline. This is Jan (2) _____. I'm the technician. How (3) _____ I (4) _____ you? - The router is/isn't connected to the power outlet/computer/ modem. - 2 The customer has/hasn't connected the computer to the power outlet/router/modem. #### Speaking USEFUL LANGUAGE Have you connected your Is the ... connected to the ...? ... to the ...? - 4 Work in pairs. Practise similar conversations. - Hello, is that the IT hotline? - Yes, this is ... speaking. I'm the technician. How can I help you? - My router doesn't work. - OK. I'll talk you through it. Are you sitting at the computer now? - Yes, I am. - OK. Look at the back. Is the ... connected to the ...? - 5 Work in pairs. Make more dialogues about the situations in these pictures. # **Language** 6 Write short form answers for these questions. - 1 Are the lights on? ✓ Yes, they are. X No, they aren't. - 2 Is the computer connected to the adapter? ✓ _____X 3 Have you sent the email? ✓____X 4 Does your new radio work? ✓ _____× - 5 Did you go to the cinema yesterday? - ✓ _____X - 6 Can I speak to your brother? ✓ _____× 7 Do you work in the city? ✓ _____X ____ 8 Are you sitting at the computer now? ✓ _____X - 9 Do those speakers cost a lot of money? - ✓ _____X - 7 Look at 6 again and listen to the questions and answers. You will hear only one answer to each question. Repeat each answer. # **Task** 8 Work in pairs. Find out all the differences between your wiring diagram and your partner's. Hint: there are at least ten differences of (a) location of sockets and (b) wiring connection. #### Instructions. - · Student A, turn to page 115. - Student B, this is your wiring diagram. #### USEFUL LANGUAGE digital receiver, DVD, VCR, TV, antenna, SCART socket, RF socket, in, out, power, socket Do you have a/an ... ? Look at the ... ? Where is the ... ? Does the ... connect to the ... ? Have you connected the ... to the ... ? Is the ... connected to the ... ? # 3 User guide #### Start here 1 Listen and complete the flow chart. #### Reading 2 Draw a similar flow chart based on the solutions in this troubleshooting guide. ### Notebook computer - troubleshooting FAQ I pressed the power button and opened the display, but the computer does not start or boot-up. #### Try these solutions: - 1 Press the power button again. - 2 If the computer does not start, check the green LED. - 3 If the green LED is off, check the power source. - 4 If the power source is off, switch on the power and press the power button again. - 5 If the computer does not start, check the disk drive. - 6 If there is a disk in the drive, take it out and press the power button again. #### Language | Co | ndition | Instruction | | | |----|-------------------------------|-------------------------|--|--| | If | the car starts, | drive away. | | | | | the car doesn't start, | check the battery. | | | | | the light is off, | press the power button. | | | | | there is a disk in the drive, | take it out. | | | 3 Make sentences with if from these short dialogues. - No, it isn't. - OK. Press the switch. - 2 Does the airboard start? - No, it doesn't. - OK. Turn the key. - 3 Are there any numbers on the screen? - No, there aren't. - OK. Press the keys. - 4 Are the LEDs off? - Yes, they are. - OK. Push the power button. - 5 Is the battery flat? - Yes, it is. - OK. Either replace it or recharge it. - 6 Do the speakers work? - Yes, they do. - OK. Connect them to the computer. Example: 1 If the light isn't on, press the switch. # Safety # 1 Rules and warnings #### Start here - 1 Work in pairs. What safety rules are in your workplace or college? Make a list. - 2 Listen and complete the warnings with the words in the box. | d | on't might | must mustn't | |---|------------|--| | 1 | You | wear a hard hat on the building site. | | 2 | | go through that door! | | 3 | You | wear safety gloves everywhere in the factory. | | 4 | | _ touch that machine! It's very hot. | | 5 | Be careful | ! High-voltage electricity. You get an electric shock. | | 6 | You | use your mobile phone here. | | | | | #### Reading - 3 Work in pairs. Why do the signs below have different colours and shapes? - 4 Read the text. Match the examples to the signs. The safety signs below follow the ISO international standard. This standard is used in the EU because it has many different languages. There are three types of safety sign: - WARNING SIGNS. These signs warn you about a
danger. They say things like this: Warning. Danger. Be careful. Look out. There is a danger or hazard here. You might injure yourself. The signs are yellow and black in colour and triangular in shape. Here are some examples: - 1 Warning. Poison: see (1) _C - 2 Danger. Fire hazard here: see (2) _____ - PROHIBITION SIGNS. These signs prohibit an action. They say: Do not do this. You must not do this. Never do this. The signs are red, white and black in colour and round in shape. Here are some examples: - 3 You must not lift this with a hook: see (3) - 4 Never take the guard off this machine: see (4) _____ - MANDATORY ACTION SIGNS. These signs order you to do something. They say: Do this. You must do this. Always do this. These signs are blue and white in colour, and round in shape. Here are some examples: - 5 Always read the manual before you service this machine: see (5) _____ - 6 You must use the guard on this circular saw: see (6) _____ 5 Complete the instructions with the words in the box. always do do not must mustn't never ____ use a lighted match in this workshop. 2 _____ wash your hands after using these chemicals. _____ enter this small space. 3 You _____ wear safety boots when you lift this. _____ not smoke in this factory. 5 You _____ touch this machine with bare hands. It's hot. 6 Write these signs in another way. Example: 1 Do not smoke here. No mobile phones No running Use might or could to explain the possible result of the hazard. | You | might
could | burn your arm.
injure/hurt yourself.
get an electric shock. | |-----|----------------|---| |-----|----------------|---| could might there are there's Complete these warnings with the words or phrases in the box. You can use the words or phrases more than once. | 1 | Take care. Heavy weight. | You | injure your back. | |---|--------------------------|---------------------|-------------------| | 9 | Warning | a cold surface here | Vou | injure your hands or arms. 3 Be careful. You ______ trap your hand in the gears. Danger. _____ lasers in this laboratory. You _____ injure your eyes. # 2 Safety hazards ■ Listen and match the warnings with the pictures. Start here 2 Listen again and write the warning number in the table. | Warning | Possible result | | | | |---------|--|--|--|--| | | You might burn your hands. | | | | | | You could injure your head. | | | | | | You might fall into the gap. | | | | | | You could trip over the bricks. | | | | | | You might trap your hand in the gears. | | | | | | You could get an electric shock. | | | | #### 3 Say the warnings and their possible results. Speaking Example: 1 Look out! There's a low beam in front of you. You could injure your head. Work in pairs. How many safety hazards can you see? Make a list. 5 You are a safety inspector, inspecting the workshop in 4. Describe what you see. | There is | a | liquid | in the workshop. | A cable | is | damaged. | |-----------|------|---|---|------------------------------|-----|--------------------| | There's | some | bricks | on the floor. | Two windows | are | locked. | | There are | no | boxes
food
drink
tools
fire extinguishers
fire exit
cones
guards | around the bricks.
on the machines.
on the stairs.
on the benches. | The fire exit
Some cables | | broken.
coiled. | | Language | Past simple o | f is and are. | | | |----------|---------------|---------------|-------------|----------------| | | | There was | some liquid | on the floor. | | | | There were | some boxes | on the stairs. | | | The fire exit | was | locked. | | | | Some cables | were | coiled. | | 6 Change more sentences from 5 into the past. Writing 7 Complete the inspector's report. Describe all the hazards in the workshop. # Safety inspection report Visit to: Kwik Automotive Workshop Date of report: 25th October I inspected the workshop on 22nd October. Here are my findings. - 1 There were no fire extinguishers anywhere in the workshop. - 2 There was a single fire exit, but the door was locked with a padlock. 3 8 Work in small groups. Write at least ten safety rules for the workshop in 4. Put away all tools after work. Do not bring food or drink into the workshop. No eating or drinking in the workshop. Always Never Staff must/must not # 3 Investigations #### Start here - Work in pairs. Discuss these questions. - What's happening? - Which directions are the planes moving in? - Who will talk to the pilots? - 2 55 Listen and complete the warning to the pilot from air traffic control. - ConAir 286. Unknown traffic. (1) ______ o'clock. (2) _____ metres. Crossing right to left. - ConAir 286. Negative contact. Request vectors. - Turn (3) ______. Heading (4) _____. Descend. (5) _____ metres. - Right turn. Heading (6) _______. Descending. (7) ______ metres. ConAir 286. ... - Con Air 286. All clear. Resume own navigation. - O Roger. ConAir 286. **Reading** 3 Read this newspaper article and complete the incident report. # **Near Miss Over Manchester** #### 25 November Last night, a military jet plane almost crashed into a large passenger plane over northern England. The incident happened in dense clouds 10 km west of Manchester. The Boeing 757 passenger plane was 3505 metres above sea level. At 22.17, the F16 military plane passed at an altitude of 3527 metres. At its closest point, the total distance between the two aircraft was only 36 metres. The Boeing, flight number BA 4058, had 234 passengers, and was on a flight path from Manchester to Greece. The military plane was on its way from Scotland to the south of England. The pilot and passengers on the plane did not see the incident because of the clouds, but the emergency anticollision system (TACS) in BA 4058 switched on automatically. The TACS system steered the passenger plane safely away from the military plane. There were no injuries in the incident. # Aviation near-miss incident report 000000000000 Date of incident: Time: Location: Distance between two planes: #### PLANE 1 Type: Boeing 757 passenger plane Altitude: Flight number: Number of passengers: Flying from: Flying to: #### PLANE 2 Type: Altitude: Flight number: - Number of passengers: none Flying from: Flying to: # Speaking 4 Work in pairs: an investigator and a pilot. Ask and answer these questions. - 1 Where / incident / happen - 5 What time / F16 / pass / Boeing - 2 When / it / take place - 6 How far / be / jet / from / passenger plane - 3 How high / be / Boeing - 7 What / be / flight number / passenger plane - 4 What / be / height / of / F16 - 8 How many passengers / be / in / Boeing | Language | Where | were | the planes? | | (They were) 3500 m above NW England. | |----------|-------|------|--------------|---------|--------------------------------------| | | When | did | the incident | happen? | (It happened) at 22.17. | Task 5 Work in pairs. Follow the instructions. Student A. Turn to page 112. Student B: take place = happen - 1 Investigate Student A's incident. Ask questions and complete the report form. - 2 Change roles. Your incident is on page 113. | About the accident | About the injured person | |--|--------------------------| | Date: | Name: | | Time: | Job title: | | Location: | Injury: | | Height above ground: | Description of accident | | Type of accident (tick one box): | | | lifted something and injured self | | | received an electric shock | | | • slipped, tripped or fell on the same level | | | • fell from a height | | | • other | | Social English 6 Complete the dialogue with the words in the box. | are can't don't I'd I'll must | | |---|----------| | We (1) go out for a drink soon. | | | O Yes, (2) like to do that. How about tomorrow? (3) | you | | free tomorrow? | | | I'm sorry, I (4) do it tomorrow. What about Saturday | y? | | Yes, Saturday's fine. What time? | | | ● I (5) know yet. (6) phone you tomorrow n | norning. | | ○ OK, good. Talk to you then. | | | Wests in a size Department to the distance in Coulth assessment | | - 7 Work in pairs. Practise the dialogue in 6 with your partner. - 8 Work in pairs. Make similar dialogues. Use different times and days. go and see a film / have a meal together / go bowling / have a party # Review Unit E Complete the sentences with the correct forms of verbs in the box. > control increase move propel push rotate steer support turn | The saddle | |--------------------------| | the cyclist. The cyclist | | the pedals | | downwards. | | The pedals | | the chain and the wheels | | This | | | the bike forwards. — the speed. If the cyclist pedals quickly, this — the speed of the bike. - 4 The cyclist _____ the bike with the handlebars. - 5 If the cyclist _____ the handlebars to the left, the bike goes left. saddle handlebars contain drive move suck work This hovercraft moves over land and water. How does it (1) ______? A powerful engine (2) _______ two large fans. The fans (3) ______ the air in. They force some of the air backwards and push some of the air downwards. A rubber skirt (4) ______ the air and the hovercraft (5) ______ on the cushion of air. 3 Complete the sentences with the words and phrases in the box. above below between in the centre on the left/right to the left/right - 1 The RF sockets are ______. - 2 The SCART sockets are _____ - 3 The SCART sockets are _____ the RF sockets and the power socket. - 4 The power socket is ______ of the SCART sockets. - 5 The RF OUT socket is ______ the RF IN socket. - 6 The TV SCART socket is ______ the VCR SCART socket. - 4 Identify the equipment from the description. Use the words in the box. - battery digital
receiver disk drive modem router starter motor - 1 This device can change digital signals into analogue signals for a TV. - 2 This device stores electricity. When it is flat, you recharge it. - 3 This equipment can connect two or more computers to one modem. - 4 This device connects a computer to the Internet through a phone line. - 5 This machine uses electricity from a battery. It starts the engine of a car. - 6 This hardware can copy data from a computer to a CD-ROM. - 5 Look at the pictures and complete the sentences with the phrases in the box. You can use the words more than once. attached to connected to disconnected from mounted on suspended from - 1 The switch is ______ the ceiling. - 2 The printer is ______ the power socket. - 3 The vice is ______ the workbench. - 4 The mouse is ______ the computer. - 5 The hook is ______ the rope. The rope is - _____ a bar. - 6 The speaker is _____ a base. It is _____ the computer. 6 Draw and complete the flowchart. If your computer does not start, check the adapter. If the adapter is not connected, connect it to the computer. If the adapter is connected, check the disk drive. If there isn't a disk in the the drive, press the power button. If there is a disk in the drive, take it out. 7 Write a troubleshooting guide from this flowchart. Begin: If the radio doesn't work, check the adapter | | Staff wear hard hats at all times on this site. You must use a lighted match near petrol or gas. You smoke in the workshop or on the building site. This low beam is very dangerous. You injure your head of wear gloves if you lift these boxes. They have sharp edg The oven is very hot. You burn yourself. Please | |---|---| | 9 | Complete the safety report with the correct form of the verbs in bracket | | | | | | | | On 24 th Augu | ust last year, I inspected the Nautilus shipyard. I (1) (find) | | many safety | hazards. Here are the main points of my safety report. | | The emerge | ency exit (2) (be) locked. There (3) (be) | | some ropes | on the ground, between two boats. Two fire extinguishers | | (4) | (be) damaged. Five workers (5) (have) no hard | | hats or safet | ty gloves. One welder (6) (not wear) his safety boots. A | | high-voltage | e cable (7) (be) coiled. There (8) (be) | | many tools o | on the ground. | | A supervisor | r (9) (tell) me about a near miss. The incident | | | (take place) in July last year. A repair man | | | (put on) his hard hat and safety boots. He then | | (12) | (climb) a ladder 8 metres up to an electrical cable. The cable | | (13) | (be) damaged. It (14) (have) some bare wires | | The repair m | nan (15) (shout) to a worker: 'Switch off the power!' | | The repetit in | (16) (quitab off) the main electricity overly and | | | (16) (switch off) the main electricity supply and | | The worker (| (, l've (17) (switch oil) the main electricity supply and | | The worker (
shouted: 'OK | K, I've (17) (switch) it off!' Then the repair man | | The worker (
shouted: 'OK
(18) | | | The worker (shouted: 'OK (18) connected to | K, I've (17) (switch) it off! Then the repair man (not be) | ## 10 Ask the questions for these answers about the near miss incident in 9. - 1 It took place in the Nautilus shipyard. (Where / incident) Where did the incident take place? - 2 It happened in July last year. (When / happen) - 3 Yes, he wore his hard hat and his safety boots. (repair man / hard hat) - 4 He used a ladder. (How / climb / to the cable) - 5 It was about 8 metres high. (How / cable) - 6 It had some bare wires. (problem) - 7 No, he didn't, but there was a spark. (get / electric shock) - 8 No, it wasn't. It was connected to a generator. (cable / mains supply) - 11 Write a set of safety rules based on the report in 9. - Project 12 Choose one of the projects below and follow the instructions. - 1 Troubleshooting in your industry Work with a partner or small group from the same or similar industries. - a) Find out about some important equipment in your industry. - b) Make a list of common operating problems, and their solutions. - Write a troubleshooting guide explaining how to solve the problems. - 2 Safety in your industry Work with a partner or small group from the same or similar industries. - a) Find out about the causes of common accidents in your industry. - b) Design a safety poster to avoid one of these accidents. - c) Write a set of safety rules for your poster. # Cause and effect ## 1 Pistons and valves #### Start here 1 Put the parts of the spray bottle together. Draw arrows to show where the parts fit the bottle. Turn to page 113 to check your answers. Work in pairs. How does the pump in the spray bottle work? Discuss with your partner. Reading 3 Match each diagram with a caption below. Caption 1: The trigger makes the piston move in. This makes the water pressure increase. The high pressure causes the outlet valve to open. The open outlet valve allows the water to flow out of the chamber. Caption 2: The piston moves in. This causes the water pressure to increase. The high pressure makes the inlet valve close. The closed inlet valve prevents the water from flowing back into the bottle. Caption 3: The piston moves out. This makes the water pressure decrease. The low pressure causes the inlet valve to open. The open inlet valve lets water flow from the bottle into the chamber. Caption 4: The piston moves out. This makes the water pressure decrease. The low pressure causes the outlet valve to close. The closed outlet valve stops air from flowing into the chamber. #### Language | The motor | causes | the shaft | to | move. | |------------------|-------------------|-----------|-----------|--------------| | THE IIIOIOI | makes | the shaft | move. | | | Th | lets | the water | flow out. | | | The open valve | allows | the water | to | flow out. | | The closed valve | prevents
stops | the water | from | flowing out. | ## 4 Make true sentences about the pump. | The trigger The piston The spring The two valves The inlet valve The outlet valve High pressure Low pressure | make(s)
let(s)
cause(s)
allow(s)
prevent(s)
stop(s) | the water the piston the inlet valve the outlet valve the piston the pressure the air | (to)
(from)
(-) | flow in/out/back.
flowing in/out/back.
move in/out/in and out.
increase.
decrease.
open.
close. | |--|--|---|-----------------------|---| |--|--|---|-----------------------|---| expand ≠ contract - 5 Rewrite these sentences to give similar meanings. Replace the verb(s) in italics with the correct form of the verb(s) in brackets. - 1 Heat makes a metal expand and cold makes it contract. (cause) - 2 Overflow pipes let extra water flow out of the tanks. (allow) - 3 The valve on the oil well does not allow the oil to explode. (prevent) - 4 These powerful pumps force the water to rise 30 m up the hill. (make) - 5 These fire extinguishers do not allow electrical fires to spread. (stop) - 6 Show your ID card and the guard will allow you to enter the factory. (let) - 6 Delete the wrong words. # PISTON PUMPS Piston pumps can pump any fluid. This one pumps water. The pump has a motor, a shaft, a piston, a spring and two valves. The valve on the right is the outlet valve. The valve on the left is the inlet valve. This is how it works. The motor makes the shaft (1 move/to move) in and out. The shaft makes the piston (2 move/to move) in and out. Let us look at the two movements of the piston. I The piston moves in. This causes the water pressure (3 increase/to increase). The high pressure forces the outlet valve (4 open/to open). The open valve allows the fluid (5 flow/to flow) out of the pump through the outlet pipe. At the same time, the high pressure makes the inlet valve (6 close/to close). This closed valve prevents the fluid (7 to flow/from flowing) back through the inlet pipe. 2 The piston moves out. This makes the water pressure (8 decrease/ to decrease). The low pressure forces the inlet valve (9 open/to open). The open inlet valve lets fluid (10 flow/to flow) into the pump through the inlet valve. At the same time, the low pressure makes the outlet valve (11 close/to close). This closed valve stops the fluid (12 to flow/ from flowing) back into the pump through the outlet pipe. # 2 Switches and relays Start here 1 Work in pairs. Try this quiz. How many electrical symbols do you know? battery, bell, buzzer, conductor, earth, lamp, switch, terminal Answers: see the glossary of electrical symbols on page 109. 2 Listen and name the sounds. Choose from the list below. buzzer, door bell, click, siren, horn, beep, alarm bell, dial tone Reading 3 Work in pairs. How does this window burglar alarm work? 4 Read the web page. Label the circuit diagram and the diagram in 3. battery buzzer spring switch terminal wire 5 Work in pairs. What is the answer to Bob's second question? 6 Read the next part of the web page. Check your answer
to 5. Because there is another circuit. The buzzer has its own circuit. When the window circuit opens, this makes the buzzer circuit close. How does this happen? The buzzer circuit has its own battery, an electromagnet and a relay switch. This is how it works: - 1 The window circuit opens. - 2 This causes the electro-magnet in the window circuit to switch off. - 3 The electro-magnet releases the relay switch on the buzzer circuit. This allows the spring to push the switch. The buzzer circuit closes. - 4 The current flows from the battery around the buzzer circuit. This makes the buzzer produce a loud noise. OK, I understand the circuit. But how does the buzzer make a sound? That's easy. Here's what happens: - 1 The current flows through the buzzer circuit. - 2 The current makes the electro-magnet switch on. - 3 The electro-magnet pulls the metal strip away from the thin wire. - 4 This causes the current to switch off again. - 5 When the current switches off, the electro-magnet switches off. - 6 This allows the metal strip to spring back towards the thin wire. - 7 The metal strip moves quickly up and down. This makes the loud buzzing noise. Thanks, Mario. I get it now. - 7 Answer these questions about the complete burglar alarm. - 1 How many circuits are there? - 2 How many electro-magnets are there? What is an electro-magnet? - 3 How many switches are there? - 4 What makes each switch open and close? - Language 8 Complete the sentences with the correct form of the verbs in the box. allow cause let make prevent stop - 1 The electro-magnet _____ the relay switch move away from the contact. - 2 The magnet _____ the window switch from opening. - 3 The wires _____ the electric current to flow from the battery to the electro-magnet. - 4 The open switch _____ the current from flowing around the window circuit. - 5 The spring _____ the window switch to break the window circuit. - 6 The closed switch _____ the current flow around the buzzer circuit. Speaking 9 Work in pairs. Explain how the burglar alarm works. Look at the circuit diagram, but don't look again at the reading text. # 3 Rotors and turbines # Start here 1 Try this quiz. What do you know about wind turbines? - How tall is the tower of the world's tallest wind turbine? a) about 100 m b) about 180 m c) about 200 m - 2 How high is the world's highest turbine? a) about 1800 m b) about 2300 m c) about 2600 m - What's the minimum wind speed for a large wind turbine? a) about 15 km/h b) about 20 km/h c) about 25 km/h - What's the maximum wind speed for a large wind turbine? a) about 45 km/h b) about 70 km/h c) about 90 km/h - 2 Listen to this radio programme and check your answers to the quiz. ### Vocabulary 3 Label this diagram with the parts of a wind turbine in the box. blade brake gear generator housing hub shaft 4 Read the text. Check your answers to 3. The wind turbine consists of a tower, a rotor and a housing. The rotor consists of three blades, and a hub. The housing is a strong rigid container. It contains a low-speed shaft, a high-speed shaft, two gears, a generator, a controller, and a brake. The low-speed shaft connects the rotor to the gears. The highspeed shaft connects the gears to the generator. Inside the housing, at the back, behind the generator, is the controller. | 800 | | Read the web page and a | 1 | | | |---|---|---|--------------------------------------|--|---| | 4 > 6 + | EFFE | MARGINE STORES | BECCHOOL STR | BOYANTATARRE | | | m | | | | | | | TECHNO CHANNEL: | the T | V channel for p | eople who | love technolog | y | | Yesterday, Techno Channel in
Dr Roger Jones. Here is part
script, <u>click here</u> . | nterviewe
of the so | ed the wind turbine expert,
cript. To download the whole | gear turn and | attached to a small gear. The the small gear makes the high at 1200–1400 rpm. | large gear makes the sma
h-speed shaft rotate. This | | How does the wind turbine wor | | agricono e garacente ser | | f(it)drives the generator at this | | | 5 The wind blows on the blades a
shaft to rotate at a speed of ab | and make
out 30–6(| s them rotate. This causes the
) rpm. | | nd then the generator produce | es AC electricity. | | But isn't that too slow? The sha | | | | s if the wind is too strong?
eter measures the speed of th | e wind (It)sends this data | | That's right. There are two shafts speed shaft. The low-speed | fts. There's | s a low-speed shaft and a high-
ned to a large gear. The high- | the controller.
wind is more t | (The controller is a small com
han about 90 km/h, the contro
ne. This prevents the wind from | puter.) If the speed of the
oller automatically switches | | | 1
2
3 | What are the two mai | in functions o | f the controller? | | | | 6 V | hat do these words ref | er to? Choose | the correct answer. | | | data = information | 1
2
3 | it (line 14) a) low | nerator
v-speed shaft
emometer | b) shaft
b) high-speed shaft
b) speed | c) gear
c) small gear
c) wind | | Language | | omplete the sentences | with the corre | ect form of the verbs in | n the box. | | | - | dase make prevent | | | | | | 1 | The wind | the bla | ides rotate. | | | | 2 | The controller
strong wind. | th | ne wind turbine from o | perating in a | | | 3 | The blades | the le | ow-speed shaft to rota | te. | | Speaking | 8 W | ork in pairs. Explain ho
on't look again at the re | w the wind tu
ading text. | rbine works. Look at t | he diagram, but | | Social English | You c | an use let's (= let us) to s | suggest somet | hing for you and other | es to do togother | | | You can use <i>let's</i> (= <i>let us</i>) to suggest something for you and others to do together. Let's go to the café after work. Let's have a party for our class next week. | | | | | | | | | | | | | | party | an also say: Why don't u
next week? | ve go to the co | ité after work? Why do | n't we have a | | | 9 M | ake your own suggestio | ons. | | | | | 1 | A: We have a free peri | od after this ci | lass. | | | | | B: Let's | | | | | | 2 | A: Work finishes early | today. | | | | | | B. Why don't wo | 7, 770 (80) | | | 3 A: Next week is the half-term holiday. B: _____ 4 A: The cinema is closed, so we can't see the film. # Checking and confirming ## 1 Data 4 - 0 + #### Start here Work in pairs. You are a TV reporter. Prepare questions about the Mars rover. #### Reading 2 Read the text quickly. Does the text answer any of your questions? include ≠ exclude Weight of boat = 1000 kg. This excludes crew, passengers and fuel. Weight of crew, passengers and fuel = 200 kg. Total weight of boat = 1200 kg. This includes crew, passengers and fuel. range = from minimum to maximum Use mass on Mars, not weight. If you travel to Mars, your weight changes, but your mass stays the same. The Mars Science Laboratory, or MSL, is a rover, or mobile robot. It can move around on the surface of Mars. Look at the diagram of the rover. It has a body, six wheels, two robot arms, two antennas and a mast. The antennas and the mast are mounted on the body, and the robot arms are attached to the front of the body. There are special tools at the end of each robot arm. Some tools break pieces of rock. Other tools dig and collect samples of soil. Scientific instruments in the rover then analyse the soil and rock powder. The top of the mast is about 2.1 metres above the ground. The mast supports two special cameras. They are called the MastCam and the ChemCam. The MastCam (mast camera) is at the top of the mast. It looks all around the rover. The ChemCam (chemistry camera) has a laser gun. The gun fires a laser beam at rocks up to 10 metres away and breaks them into powder. The camera then analyses the powder. The rover is about 2.2 m long and its total mass is just under 800 kg. This includes at least 60 kg of scientific instruments. It has a six-wheel drive and a special suspension system. The wheels are made of titanium and are 25 cm in diameter. The suspension system allows the six wheels to remain on the ground all the time. It also allows the rover to go over big rocks (up to 75 cm high), and over deep holes. Each wheel has its own motor. This allows the vehicle to rotate 360 degrees. It can move at a speed of up to 90 metres per hour. The average speed is about 30 metres per hour. The rover can operate in the temperature range on Mars. This ranges from -120°C minimum up to 85°C maximum. The rover can travel up to 200 metres per day and can operate for up to one Mars year (approximately 687 days). # 3 Read the text again and complete this specification chart. | Mars Science Laboratory (Mars rover): specifications | | | | |--|--------------------------------|--|--| | 1 Total height 7 Maximum rotation of rover | | | | | 2 Total length | 8 Maximum obstacle height | | | | 3 Total mass | 9 Maximum speed | | | | 4 Mass of instruments | 10 Average speed | | | | 5 Number of wheels | 11 Max./Min. temperature range | | | | 6 Wheel size | 12 Maximum daily distance | | | #### Vocabulary Ways to express approximation: | abaut anavarianatah | > more than, over | ≤ up to | | |------------------------|--------------------|------------|--| | ~ about, approximately | < less than, under | ≥ at least | | - 4 Complete the sentences. Use the information in brackets. - 1 The Mars rover _ (height ~ 2.1 m; length ~ 2.2 m) - 2 The rover _ (mass > 750 kg) - 3 The scientific instruments ___ $(mass \ge 60 \text{ kg})$ - 4
The wheels _ (rotation ≤ 360°) - 5 The rover _ (distance > 100 metres per day; operation ≤ ~ 687 days) #### 5 Write questions for these answers about the rover. Speaking - 1 It's called the Mars Science Laboratory. - 2 It has six wheels. - 3 Titanium. - 4 They're attached to the front of the body. - 5 It's mounted on the top of the body. - 6 About 2.1 metres. - 7 It looks at the whole area around the rover. - 8 It fires a laser beam at rocks and analyses them. - 9 Around 60 kilograms. - 10 Up to 90 metres per hour. - 6 Work in pairs. Practise asking and answering the questions in 5. - 7 Work in pairs. Student A guess the answers. Then check them with Student B. - 1 The diameter of Mars is ... a) ~ 4280 km. b) ~ 6740 km. c) ~ 11,290 km. - 2 Mars rotates 360° in ... a) ~ 24 hours. b) ~ 36 hours. c) ~ 48 hours. - 3 Mars is ... kilometres from the Sun. a) ~ 220 million. b) ~ 150 million. c) ~ 300 million. - 4 Mars orbits the Sun in ... a) ~ 365 Earth days. b) ~ 685 Earth days. c) ~ 905 Earth days. Example: 1 The diameter of Mars is about 4280 km. Is that right? Student B: Turn to page 113. # 2 Instructions 1 Make a list of the instructions to give the Mars rover. Start here - 2 Listen and complete the dialogue between the controller and the rover. - Move forwards 200 cm. - Confirmed. I'm (1) _______ forwards 200 cm. - Now rotate 15 degrees to the left. - Confirmed. I'm (2) ________ 15 degrees to the left. - 3 You are the rover. Confirm your actions. | Instruction | Confirmation | | |--------------------------------------|-----------------------------|--| | 1 Move forwards 200 cm. | I'm moving forwards 200 cm. | | | 2 Rotate 15 degrees to the left. | | | | 3 Reverse for 300 cm. | | | | 4 Rotate 80 degrees to the right. | | | | 5 Go up the hill. | | | | 6 Roll down the hill. | | | | 7 Go round to the left of the rocks. | | | | 8 Stop. | | | #### 4 E359 Listen and complete the dialogue. Listening A is training B how to control the Mars rover. - A: Right. I'll give you an instruction. First, do it. Then confirm what you're doing, OK? - B: OK. - A: Then confirm what the rover's doing. Is that clear? - B: Yes. - A: Right. Let's go. First, (1) ______ the rover (2) _____ 200 cm. - B: OK. I'm (3) _____ the joystick forwards. - A: Good. Now what's (4) _____? - B: The rover (5) _____ moving. - A: Right. Wait five seconds. Now what's happening? - B: OK. It's (6) _____ forwards now. - 5 Work in pairs. Discuss the question below. In this simulation on Earth, the Mars rover responds after five seconds. If the rover is on Mars, it responds after about ten minutes. Why? - 6 Complete the table. Use information from the table in 3 and the notes below. Speaking | Instruction | | Confirmation | After 1 second | After 5 seconds | |-------------|--------------------------------------|--|-------------------------|---------------------------| | 1 | Make the rover move forwards 200 cm. | OK. I'm pushing the joystick forwards. | The rover isn't moving. | Now it's moving forwards. | | 2 | | | | | | 3 | 12252 | | | | | 4 | | | | | - push joystick forwards - turn wheel left - pull joystick backwards - press 'rotate' button - 7 Work in pairs. Practise the dialogues, using the notes in 3. Try not to look at the table. #### Begin: - A: Make the rover move forwards 200 cm. - B: OK. I'm pushing the joystick forwards. - A: Good. What's happening now? - B: The rover isn't moving. - A: That's OK. Wait for five seconds. Is it moving forwards now? - B: Yes, it is. - Test your memory. Look at the pictures for 10 seconds. Then turn to page 113. #### **3** Progress #### Start here 1 See Listen to the astronaut talking about his work. Complete the list of tasks with the verbs in the box > assemble attach bring connect disconnect dismantle inspect remove repair replace take test | (1) 1000 010 00 | quipment for the spa | icewaiks. | |-----------------|----------------------|-------------------------------| | On spacewall | c 1: (2) | the damage. | | (3) | photographs of | the tank. Plan the repair and | | prepare for the | next spacewalk. | | | On spacewall | 2: (4) | the pipes. (5) | | | the tan | | | (7) | the tank. (8) | the damage or | | (9) | the part. (10) | the tank. | | On spacewalk | 3: (11) | the tank to the space static | | (12) | the pipes to the | a tank | #### Vocabulary 2 Find the opposites of these words in 1. connect, assemble, damage, remove #### Listening 3 61 Listen to the controller talking to the astronaut. Complete the dialogue. Task June 5 6 7 Do first spacewalk. Repair the oxygen tank. The controller is speaking from the control centre on Earth. The astronaut is on a space station. - OK, today is the 6th of June, 7 pm in the evening. I'm checking progress on the space station. Have you (1) ______ the first spacewalk yet? Yes, we have. - O res, we have - Good. When (2) ______ you do it? - We (3) _____ the spacewalk yesterday, on the 5th of June. - Right. And have you (4) _____ the oxygen tank yet? - O No, we haven't (5) ______ it yet. We're still (6) _____ it. - When (7) ______ you finish it? - We'll complete the job tomorrow morning. ## Language You can use yet with some questions and negatives in the present perfect. It means up to now. - 1 We haven't repaired the oxygen tank yet. - 2 A: Have you repaired the oxygen tank yet? B: No, not yet. ## Speaking Work in pairs. Make similar dialogues. Today is 17th June. 5 Work in pairs. Follow the instructions. Task - Student A: Turn to page 115. - Student B: It's 8th August. You're doing a progress check. Ask Student A questions and complete your checklist. | Task | Y/N? | Notes | |------------------------------------|------|-------------------------------| | Dismantle old water system | Y | Completed 4th Aug. | | Assemble new water system | | The second day the second day | | Install water system | | | | Test equipment for third spacewalk | | | | Take video of damaged nose cap | | | | Inspect damage to waste tank | | | | Assemble new robot arm | | | | Attach new robot arm | | | B: Have you dismantled the old water system yet? - A: Yes, we have. - B: When did you complete the job? # Review Unit F | ٠ | 1 Complete | the sentences | with 1 | the correct | form of | the verbs | in | the b | ox. | |---|------------|-----------------|------------|--------------|----------|------------|----|-------|-----| | | Compiece | , the semeences | AA T C T T | CITO COLLOCE | TOTAL OF | care reade | | | | allow cause let make prevent stop | 1 | The water flows down onto the wat | ter wheel. This | the wheel | |---|-----------------------------------|-----------------|-----------| | | turn. | | | - 2 The valve opens. This _____ the water flow in. - 3 The valve closes. This _____ the water from flowing out. - 4 The switch touches the contact. This ______ the electric current to flow. - 5 The switch moves away from the contact. This ______ the electric current from flowing. - 6 The water level rises. This _____ the float to rise. ## 2 Complete the driving instructor's words with the correct form of the verbs in brackets. - 1 If you _____ (press) the accelerator pedal, this _____ (make) the car _____ (go) faster. - 2 If you _____ (push) the brake pedal down, this _____ (cause) the car to _____ (stop). - 3 If you _____ (pull) the parking brake up, this ____ (prevent) the car from ____ (move). - 4 If you _____ (release) the parking brake, this _____ (allow) the car to _____ (move) again. close flow from go down open rise to - 1 You push the handle down. This makes the piston _____ - 2 The piston rises. This makes valve B _____ and causes valve A _____ - 3 Valve B closes. This prevents water _____ into the chamber. - 4 Valve A opens. This allows water ______ into the chamber. - 5 You pull the handle up. This causes the piston ______. - 6 The piston goes down. This makes valve B _____ and causes valve A _____. 4 Draw a line from each word or phrase to its opposite. increase expand bring decrease low assemble contract dismantle inlet outlet less than take more than high connect remove replace disconnect approximately exactly 5 Complete this explanation of how the electric bell works with the correct form of the words in the box. close flow make move open pull strike #### How an electric bell works Someone presses the bell button, and the switch (1) ______. An electrical current (2) _______ through the coil. This (3) _______ the coil become an electromagnet. The electromagnet (4) _______ the metal arm towards it. (Diagram 1). This causes the hammer to (5) _______ the bell. At the same time, it (6) _______ the circuit. Now the coil is not a magnet. The hammer (7) _______ away from the coil. (Diagram 2). This the circuit again. The hammer (9) _____ the 6 Work in pairs. Explain how this hand pump works. bell again and again. 7 Write your explanation of how the hand pump works. 4 Draw a line from each word or phrase to its opposite. bring decrease low increase expand assemble outlet less than contract dismantle inlet high connect take more than approximately remove replace disconnect exactly 5 Complete this explanation of how the electric bell works with the correct form of the words in the box. close flow make move open pull strike #### How an electric bell works | Someone presses t | he bell button, and the switch (1) | |---------------------|--| | An electrical curre | nt (2) through the coil. This | | (3) | the coil become an electromagnet. The electromagnet | | (4) | the metal arm towards it. (Diagram 1). This causes the | | hammer to (5) | the bell. At the same time, it | | (6) | the circuit. Now the coil is not a magnet. The hammer | | (7) | away from the coil. (Diagram 2). This | | (8) | the circuit again. The hammer (9) the | | bell again and agai | n. | - 6 Work in pairs. Explain how this hand pump works. - Write your explanation of how the hand pump works. | 8 | Complete these dialogues. Use the corre | ct form of the
verbs in | brackets. | | | | | |----|---|---|---------------|--|--|--|--| | | A supervisor in a car repair workshop is reporting on progress to his manager. | | | | | | | | | 1 ● The men have (replace) the windscreen. | | | | | | | | | ○ Good. When did they (replace) it? | | | | | | | | | Let me check the file They | (replace) it | yesterday. | | | | | | | 2 • They've (take) out | the old brake system. | | | | | | | | That's good. When did they (take) it out? | | | | | | | | | Let me see They | _ (take) it out this morr | ing. | | | | | | | 3 • Bob has (drive) th | e car to the body repair | r shop. | | | | | | | That's great. When did he | (drive) it there? | | | | | | | | Let me check Ah yes, he | (drive) it ther | e about two | | | | | | | hours ago. | | | | | | | | | 4 • Tom has (speak) t | o the customer about the | he damage to | | | | | | | her car. | | | | | | | | | O Great. When did he | (speak) to her? | | | | | | | | Er, let me see He | _(speak) to her yester | lay. | | | | | | 9 | Work in pairs. Practise the dialogues in | 8. | | | | | | | 10 | Work in pairs. Practise the dialogue belo
progress with a mechanic. Then make no
from the table. | _ | | | | | | | | Have you repaired the brakes yet? Yes, I have. Good. When did you do that? I did it yesterday. Right. And have you replaced the | Repair brakes
Replace windscreen
Lubricate main shaft | X in progress | | | | | | | windscreen yet? No, I haven't. I'm replacing it now. OK. And what about the main shaft? No, I haven't. I'll do that tomorrow mo | - | | | | | | | | | | cccc | | | | | | | Lubricate axles and shafts | / | | | | | | | | | ✓ last week | | | | | | | | Disconnect fuel pipe from fuel tank | ✓ yesterday | | | | | | Take photographs of dented panels X tomorrow morning Remove old radiator X tomorrow afternoon Install new cooling system X in progress Repair dented bumpers 1 Replace damaged valve on water pump X in progress Service the brake system Х Repair damaged radio X later today √ two days ago Connect battery to starter motor ✓ 8.00 this morning Test new air conditioner 11 Write a description of this dam and how it works, using all the information and the words in the box. > carry cause drive enter flow generate pass produce rotate turn leave make open - gate/open → water/in - water from reservoir → filter → gate → tunnel Project 12 Find out some facts about a major engineering project in your country or region. - Draw a simple labelled diagram. - 2 Make a specifications chart. - 3 Write a short description of the project: - Function of project - Dimensions - Main parts - Materials · How it works # Grammar summary ## 1 Present simple of be | Positive | | | |---------------------|-----|---------------| | I | am | a student. | | You | are | early. | | He/She | is | a technician. | | The machine (It) | is | on. | | The switches (They) | are | off. | | We/They | are | electricians. | I am \rightarrow I'm you are, we are, they are \rightarrow you're, we're, they're he is, she is, it is \rightarrow he's, she's, it's | Negative | | | | |----------|-----|-----|----------------| | I | am | not | a technician. | | You | are | not | late. | | He/She | is | not | a student. | | That | is | not | an M6 spanner. | | We/They | are | not | from Italy. | I am not → I'm not you are not → you're not or you aren't he is not/she is not → he isn't/she isn't or he's not/she's not it is not → it isn't or it's not we are/they are → we aren't/they aren't or we're not/they're not | Yes/ | No question | | |------|--------------|----------------| | Am | 1 | early? | | | we | late? | | Are | the switches | on? | | | you | the manager? | | | he/she | a technician? | | Is | that | an AC adapter? | Don't use contractions in a short answer. Are you French? Yes, I am. (Not Yes, I'm.) Is he a technician? Yes, he is. (Not Yes, he's.) | Wh- que | estion | | |---------|--------|--------------| | Where | are | we now? | | | is | the manager? | | Who | are | those men? | | What | is | that sound? | In these tables, Wh- means any question word, e.g. Where? When? How? How many? Why? | 14/1 | is | that | called? | |------|-----|-------|--------------------| | What | are | those | called in English? | What is → What's You can say What's this? but not What's it? You have to say What is it? # 2 Present simple of have | Positive | | | |---------------|------|------------| | I/You/We/They | have | 25 screws. | | My bike (It) | has | 21 gears. | | Negative | | | | | |---------------|------|-----|------|-------------| | I/You/We/They | do | | have | any screws. | | My bike (It) | does | not | have | 27 gears. | does not → doesn't do not → don't | Yes/N | o question | | | |-------|----------------|------|-------------| | Do | you/we/they | have | any screws? | | Does | your bike (it) | have | 27 gears? | In colloquial English: Have you got any screws? (BrE) = Do you have any screws? (AmE) I've got 25 screws. (BrE) = I have 25 screws. (AmE) | Wh- questi | on | | | | |------------|--------|------|----------------|--------| | | gears | does | your bike (it) | have? | | How many | screws | do | you/we/they | nave : | #### 3 Present simple of other verbs | Positive | | | | |---------------------|------|-----------|--| | He/She | | | | | I/You/We/They | work | in Paris. | | | This tool (It) cuts | | | | | Those tools (They) | cut | wood. | | | Negative | | | | | |--------------------|------|-----|----------|---------| | He/She | does | | comple | in Dame | | I/You/We/They | do | | in Rome. | | | This tool (It) | does | | | accept. | | These tools (They) | do | not | cut | metal. | does not \rightarrow doesn't do not \rightarrow don't | Yes/N | o question | | | |-------|--------------------|------|-----------| | Do | you/they | | in Paris? | | Does | he/she | work | in Paris? | | Does | this tool (it) | | | | Do | these tools (they) | cut | metal? | | Wh- qu | estion | | | | |---------------------|--------|--------------------|-------|--| | Mhara | do | you/they | work? | | | Where | does | he/she | work? | | | does this tool (it) | | this tool (it) | do? | | | What | do | these tools (they) | do? | | #### Spelling There are three different ways to spell the ending of a present simple verb: | + -S | | + -es | | -y → -ies | | |------|-------|-------|--------|-----------|---------| | flow | flows | go | goes | carry | carries | | move | moves | pass | passes | study | studies | | rise | rises | push | pushes | fly | flies | #### Pronunciation There are three different ways to say the -s/-es ending of a present simple verb: | z | s | iz (rhymes with his) | |-------|---------|----------------------| | flows | sinks | rises | | moves | stops | passes | | burns | strikes | presses | | goes | hits | pushes | #### 4 Modal verb: can | Positive | | | | |----------------------|-----|-----------------------|--| | I/You/He/She/We/They | can | operate this machine. | | | A helicopter (It) | can | fly backwards. | | # Negative I/You/He/She/We/They can not operate the forklift truck. can not fly backwards. #### can not → can't or cannot An aeroplane (It) | Yes/I | Vo question | | |-------|----------------------|-----------------------| | Can | I/you/he/she/we/they | operate this machine? | | Can | a helicopter (it) | fly backwards? | | Wh- c | uestic | on | | | |-------|--------|------------------|------|----------| | How | can | I/he/she/we/they | help | you? | | What | can | I/he/she/we/they | do | for you? | #### 5 Modal verb: will | Positive and negative | | | | | |-----------------------|------|----------|-------|-----------| | 10/ 11 (01 141- 771 | will | the wall | | | | I/You/He/She/We/They | will | not | build | tomorrow. | will not → won't I will, you will, he will, she will, it will, they will → I'll, you'll, he'll, she'll, it'll, they'll #### 6 Modal verbs: must, could and might | You | must | wear a hard hat here. | |-----|---------------------|----------------------------------| | You | must not
mustn't | touch the machine. | | You | might
could | burn your arm.
hurt yourself. | ### Time expressions Some time expressions you can use with the past simple: - yesterday, this morning, the day before yesterday - three minutes ago, two days ago, five weeks ago - last week, last month, last year - in 2005, on the 20th October, at 6.30 am # 10 Past simple and past participle forms The past participle is part of the present perfect verb. Here are some examples of verbs in this book. Most verbs are regular. Both the past simple and the past participle end in -ed. | Regular (ending in -ed) | | | |-------------------------|-----------------------------|--| | verb | past simple/past participle | | | attach | attached | | | close | closed | | | connect | connected | | | cool | cooled | | | crack | cracked | | | crash | crashed | | | damage | damaged | | | dent | dented | | | disconnect | disconnected | | | drop | dropped | | | fit | fitted | | | happen | happened | | | inspect | inspected | | | launch | launched | | | mount | mounted | | | press | pressed | | | remove | removed | | | repair | repaired | | | replace | replaced | | | scratch | scratched | | | suspend | suspended | | | travel | travelled | | Some verbs are irregular. The past simple and the past participle don't end in -ed. | verb | past simple/past participle | | |-------|-----------------------------|--| | bend | bent | | | bring | brought | | | build | built | | | burn | burnt | | | buy | bought | | | cut | cut | | | find | found | | | get | got | | | have | had | | | hold | held | | | leave | left | | | let | let | | | lose |
lost | | | make | made | | | put | put | | | read | read | | | say | said | | | sell | sold | | | send | sent | | | sit | sat | | | tell | told | | | verb | past simple | past participle | |--------|-------------|-----------------| | become | became | become | | break | broke | broken | | do | did | done | | drive | drove | driven | | fall | fell | fallen | | fly | flew | flown | | go | went | gone | | rise | rose | risen | | run | ran | run | | speak | spoke | spoken | | steal | stole | stolen | | take | took | taken | | tear | tore | torn | | write | wrote | written | #### Pronunciation There are three different ways to say the *-ed* ending of a past simple verb: | d | t | id* | |---------|-----------|-----------| | flowed | launched | mounted | | moved | increased | added | | changed | dropped | inspected | | opened | gripped | rotated | ^{*} rhymes with did Here are some past participles often used as adjectives: #### Damage cracked, damaged, dented, punctured, scratched, broken, stolen, torn, bent, burnt, cut #### Location connected (to), disconnected (from), suspended (from), mounted (on), attached (to) Example: The pipe is cracked. The switch is connected to the battery. ## 11 Past simple of be | Positive | | | |-------------|------|----------------------------| | I/He/She | was | in London last year. | | You/We/They | were | in the workshop yesterday. | | Negative | | | | |-------------|------|-----|----------------------------| | I/He/She | was | | in Dubai last year. | | You/We/They | were | not | in the workshop last week. | was not → wasn't were not → weren't | Yes/No | o question | | |--------|-------------|----------------------------| | Was | I/he/she | in Dubai last year? | | Were | you/we/they | in the workshop last week? | | Wh− qu | estion | | | |--------|--------|-------------|------------------| | When | was | I/he/she | in London? | | vvnen | were | you/we/they | in the workshop? | #### 12 Zero conditional | If | the sun | | shin | ne | -s | , | the current flows from the panel. | |----|----------------|----------------------|------|----|----|---|-------------------------------------| | " | the sun | does not/
doesn't | shin | ie | | , | the current flows from the battery. | | | the | | | _ | _ | | | | If | the
battery | is | full | , | 4 | | rrent doesn't flow
e battery. | #### 13 Countable and uncountable nouns | screws are countable | | | cement is uncountable | | |-------------------------|----------|--|-------------------------|--------| | a
one | screw | | | | | some
two | screw -s | | some | cement | | a bag of
two bags of | | | a bag of
two bags of | | Countable nouns can be both singular and plural. Examples: screw, nail, hammer, bottle. Uncountable nouns are always singular. Examples: concrete, cement, sand, oil, water. #### How much/How many | Do you | some/ | screws? | Ном | many | screws | do you | |--------|-------|---------|-----|------|--------|--------| | need | any | cement? | HOW | much | cement | need? | ### 14 Verb constructions cause, allow + to infinitive make, let + bare infinitive stop, prevent + from + gerund | The motor
The open valve | causes
allows | the shaft
the water | to move.
to flow out. | | | |-----------------------------|-------------------|------------------------|--------------------------|--|--| | The motor
The open valve | makes
lets | the water | flow out. | | | | The closed
valve | prevents
stops | the water | from flowing o | | | # 15 Describing damaged or missing items ## Passive | The screen | is | oorotob od | |--------------|-----|------------| | The speakers | are | scratched. | # have/don't have | The cable | has | no | alua | |------------|--------------|-----|--------| | The cable | doesn't have | а | plug. | | The cobles | have | no | alves | | The cables | don't have | any | plugs. | # There is/There are | There is | a scratch | on the screen. | |-----------|----------------|----------------| | There is | no manual | in the box. | | There are | some scratches | on the screen. | | There are | no batteries | in the box. | there is → there's there are → there're # Reference section #### 1 Abbreviations #### SI units of measurement Abbreviations are usually *singular* (e.g. 50 metres is 50 m, not 50 ms) Abbreviations are usually *lower-case* (e.g. *mm*, not *MM*) with very few exceptions. Note that: - · litre can be L or l - ampere (A), watt (W) and volt (V) use upper-case (capital) letters ### Length | mm | millimetre(s) | |----|---------------| | cm | centimetre(s) | | m | metre(s) | | km | kilometre(s) | #### Area | mm^2 | square millimetre(s) | |--------|----------------------| | m^2 | square metre(s) | | km^2 | square kilometre(s) | #### Volume/Capacity | mm^3 | cubic millimetre(s) | |----------|---------------------| | m^3 | cubic metre(s) | | km^3 | cubic kilometre(s) | | ml | millilitre(s) | | cl | centilitre(s) | | L (or I) | litre(s) | | | | ### Mass/Weight | mg | milligram(s | |----|-------------| | g | gram(s) | | kg | kilogram(s) | | t | tonne(s) | ### Electricity | A | ampere(s) or amp(s) | |-----|---------------------| | Ah | ampere hour(s) | | W | watt(s) | | kW | kilowatt(s) | | kWh | kilowatt hour(s) | | V | volt(s) | | | | ### Speed | m/s | metre(s) per second | |------|--------------------------| | km/s | kilometre(s) per second | | km/h | kilometre(s) per hour | | rpm | revolution(s) per minute | #### Other units in common use | gal | | gallon(s) | 1 gal (US) = 3.7854 L | |-----|--------|------------------|-----------------------| | | | | 1 gal (UK) = 4.5461 L | | pt | | pint(s) | 1 pt (US) = 0.4732 L | | | | | 1 pt (UK) = 0.5683 L | | in | | inch(es) | 1 in = 25.4 mm | | yd | | yard(s) | 1 yd = 0.9144 m | | mi | (or m) | mile(s) | 1 mi = 1.61 km | | mp | h | mile(s) per hour | 100 mph = 161 km/h | | lb | | pound(s) | 1 lb = 0.4536 kg | | oz | | ounce(s) | 1 oz = 28.3495 g | #### Temperature | °C | degree(s) Celsius | |-------|-----------------------------| | °F | degree(s) Fahrenheit | | To co | onvert Celsius to Fahrenhei | °F = °C × 9/5 + 32. To convert Fahrenheit to Celsius: $^{\circ}C = (^{\circ}F - 32) \times 5/9.$ #### Some other abbreviations used in this book | Some oth | er abbreviations used in this book | |------------|---| | am | in the morning | | AC | alternating current | | approx. | approximately | | CD | compact disc | | CD-ROM | compact disc, read-only-memory | | DC | direct current | | DVD | digital video disc | | etc. | and so on/etcetera | | FAQ | frequently asked questions | | GB | gigabytes | | ID | identity | | ISO | International Organisation for | | | Standardisation | | IT | information technology | | LED | light-emitting diode | | LH | left-hand | | MB | megabytes | | n/a | not applicable; write this when there | | | is no possible answer, or no need to | | | answer a question on a form | | no. | number | | NS | near-side (of car), away from the | | | steering wheel | | N, S, E, W | NW north, south, east, west, north | | | west | | os | off-side (of car), next to the steering | | | wheel | | pm | in the afternoon (or evening) | | qty | quantity | | R&D | research and development | | ref. | reference/with reference to | | RF | radio frequency; the RF IN socket on a | | DII | TV comes from the antenna | | RH | right-hand | | SCART | a connector between two audio-visual | | | machines, e.g. a TV and a DVD player, | | | also called a Euro-connector | International System of Units; metric SI TV VCR units television video cassette recorder # 2 Numbers, times and dates # Numbers up to 100 | | _ | | | |----|----------|-----|-----------------------| | 1 | one | 14 | fourteen | | 2 | two | 15 | fifteen | | 3 | three | 16 | sixteen | | 4 | four | 17 | seventeen | | 5 | five | 18 | eighteen | | 6 | six | 19 | nineteen | | 7 | seven | 20 | twenty | | 8 | eight | 21 | twenty-one | | 9 | nine | 22 | twenty-two | | 10 | ten | 23 | twenty-three | | 11 | eleven | 24 | twenty-four | | 12 | twelve | 25 | twenty-five | | 13 | thirteen | | | | 30 | thirty | 70 | seventy | | 40 | forty | 80 | eighty | | 50 | fifty | 90 | ninety | | 60 | sixty | 100 | a hundred/one hundred | | | | | | ### Numbers over 100 | 100 | a hundred/one hundred | |---------------|--------------------------------| | 1000 | a thousand/one thousand | | 10,000 | ten thousand | | 100,000 | a hundred thousand/one hundred | | | thousand | | 1,000,000 | a million/one million | | 1,000,000,000 | a billion/one billion | ### Ordinal numbers | 1st | first | 11th eleventh | 21st twenty-first | |-----------------|---------|----------------------------|---------------------| | 2^{nd} | second | 12th twelfth | 22nd twenty-second | | $3^{\rm rd}$ | third | 13th thirteenth | 23rd twenty-third | | 4^{th} | fourth | 14th fourteenth | 24th twenty-fourth | | 5th | fifth | 15 th fifteenth | 25th twenty-fifth | | 6 th | sixth | 16th sixteenth | 26th twenty-sixth | | 7^{th} | seventh | 17th seventeenth | 27th twenty-seventh | | 8^{th} | eighth | 18th eighteenth | 28th twenty-eighth | | 9^{th} | ninth | 19th nineteenth | 29th twenty-ninth | | 10^{th} | tenth | 20th twentieth | 30th thirtieth | | | | | 31st thirty-first | #### Decimal numbers | 0.1 | nought point one/zero point one | | |--------|---|--| | 15.1 | fifteen point one | | | 15.15 | fifteen point one five | | | 15.015 | fifteen point oh one five/fifteen point | | | | zero one five | | #### Times | 24-hour
clock | 12-hour
clock | Some ways to say it | |------------------|------------------|---| | 05.15 | 5.15 am | oh five fifteen
five fifteen in the morning
five fifteen am | | 10.30 | 10.30 am | ten thirty in the morning ten thirty am | | 14.45 | 2.45 pm | fourteen forty-five
two forty-five in the afternoon
two forty-five pm | | 21.55 | 9.55 pm | twenty-one
fifty-five
nine fifty-five pm
nine fifty-five in the evening | #### Months January, February, March, April, May, June, July, August, September, October, November, December #### Days Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday ### Saying years - 1998 = nineteen ninety-eight - 2000 = two thousand - 2008 = two thousand and eight (BrE); two thousand eight (AmE) #### Writing dates - 2011-06-14 (yyyy-mm-dd) ISO 8601: an international standard - 14/06/11 (dd/mm/yy) commonly used in Europe - 06/14/11 (mm/dd/yy) commonly used in the US - 14th June 2011 - 14 June 2011 - June 14, 2011 - June 14th, 2011 #### Saying dates - the fourteenth of June, two thousand and eleven (BrE); two thousand eleven (AmE) - · June the fourteenth, two thousand (and) eleven ## 3 Symbols General warnings and safety symbols danger/warning/caution/hazard Specific hazards flammable toxic/poison high voltage ### Safety equipment or help emergency exit/ fire exit fire extinguisher hospital first aid emergency stop #### Prohibitions no entry no exit no smoking ## Some electrical symbols fuse ## Other symbols - plus/positive - minus/negative - # hash/number - degree(s) - ± plus or minus - = equals - ≠ does not equal - ≥ at least (also more than or equal to) - ≤ up to (also less than or equal to) - approximately/about (also has other uses) - < less than, under - > more than, over - √ tick - X cross - point (decimal number) #### Currency symbols - € euro(s) - \$ dollar(s)/peso(s)/reai(s) - s pound(s) - ¥ yen - 元 renminbi/yuan - rial(s)/riyal(s) - Rs Rp rupee(s) ### Internet symbols - @ at - .com dot com - A-B A hyphen B / A dash B - A/B A slash B / A forward slash B - A_B A underscore B ### 4 Useful words ## Industries and technologies aerospace agriculture automotive engineering biotechnology chemical engineering civil engineering building and construction electrical engineering electronics/electronic engineering environmental engineering information technology/IT information and communications technology/ICT manufacturing marine engineering materials testing mechanical engineering petroleum public health security telecommunications/telecoms transport ### Names of jobs engineer manager technologist technician supervisor team leader mechanic operator #### Materials Metals: aluminium, titanium, copper, iron, lead, tin Alloys: steel, chrome, cromoly Plastics: polycarbonate, polyester, polystyrene, nvlon Composites: fibreglass, graphite #### British and American English Here are some of the words used in this book, but there are many more. Key the words *American British English* into an Internet search engine or *Wikipedia* to find complete lists. Some AmE words and spellings are now used also in BrE, for example, *antenna*, *disk*. Some BrE words are now used in AmE, for example, *car*. ## British English (BrE) American English (AmE) accelerator gas pedal/gas aerial antenna aeroplane airplane aluminium aluminum cable/wire (electricity) cord automobile car centre center colour color disc disk earth (electricity) ground fibreglass fiberglass dead flat (battery) lift (in a building) elevator litre liter metre, kilometre, meter, kilometer, millimeter millimetre mobile/mobile phone cellphone gas/gasoline petrol polystyrene styrofoam postal code zip code wrench spanner storey (in a building) floor/story flashlight torch tire tyre vice (in a workshop) vise windscreen windshield # 5 Social phrases #### Meeting a friend or co-worker Hello. Hi. Morning. Good morning. How are you? How are things? How are you doing? How's it going? Fine, thanks. Great. How about you? #### Introducing yourself I'm Hans. My name's Hans. #### Introducing someone else This is Mia. She's a student here. She's a technician. #### Meeting someone for the first time Pleased to meet you. Nice to meet you. Good to meet you #### Taking leave Goodbye. Bye. Cheerio. See you. See you later. See you tomorrow. ## 6 Telephone phrases ### Beginning a phone call Hello. This is Mike. It's Mike. Mike here. Mike speaking. Hello. Is that Mike? Yes, this is Mike. Is that Jim? #### Listening to a voicemail Thank you for calling ABC Computers. You've reached the voicemail of John Wilson. Please leave a message after the tone. ### Leaving a voicemail Hello. My name is ... My phone number is ... My email address is ... My address is ... I'd like to order/buy ... I'd like some information about ... Could you please send me your catalogue/ brochure. Please call me back. It's urgent. Please get back to me when you can. Thanks. Thank you. ## Listening to an automatic message Thank you for calling ABC Computers. For the sales department, please press 1. To hear information about our services, press 2. To speak to a service technician, please hold. Please wait. ### Answering a call from a customer Thank you for calling ABC Computers. This is the service department. My name's Jason. This is Jason. Jason speaking. I'm the service technician. How can I help? How can I help you? What can I do for you? What's the problem? ## 7 Forms and email conventions #### **Forms** ^{*} we'll send the goods to this address #### **Email** ^{*} Use this form when you know your customer well. ^{**} we'll send the invoice to this address # Extra material # 7 Specifications 1 Dimensions Task exercise 9 page 53 #### Student A 2 Answer Student B's questions about the Rion-Antirion Bridge. # 8 Reporting 2 Damage and loss Task exercise 9 page 61 #### Student A 2 Answer Student B's questions about the damage to your car. # 10 Safety 3 Investigations Task exercise 5 page 79 #### Student A Read about your incident and answer Student B's questions. Two days ago, 23rd November, a builder called Gino Petri had an accident on the 3rd floor of the new building. The accident happened at 09.38. Mr Petri was about 20 m above the ground at the time. He tripped over a metal girder and he fell from the 3rd floor to the 2nd floor. He fell into a safety net and received no injuries from the fall, but the girder cut his leg. 2 Then change roles. Investigate Student B's incident. Ask questions and complete the report form on page 79. # Unit 8 Reporting 1 Recent incidents Speaking exercise 7 page 59 Look at this picture for one minute. Then turn back to page 59. # 10 Safety 3 Investigations Task exercise 5 page 79 Student B 2 Read about your incident and answer Student B's questions. Yesterday, 15th July, an electrician called Pedro Gomez had an accident on the #1 scaffolding. The accident happened at 14.46. Mr Gomez was about 10 m above the ground at the time. He raised his right arm. His arm touched a live wire and received a small electric shock. He had a small 2 cm burn on his right arm, but received no other injuries. # Unit 12 Checking and confirming 1 Data Speaking exercise 7 page 91 Student B Confirm or correct Student A's answers. #### Mars - 1 6747 km - 2 24 hours and 37 minutes - 3 228 million km (average) - 4 687 Earth days Yes, that's right. No, that's wrong. Change it to # Unit 12 Checking and confirming 2 Instructions Speaking exercise 8 page 93 Write down what is happening in the pictures using the words in the box. astronaut car helicopter motorboat plane rover shuttle truck # Unit 11 Cause and effect 1 Pistons and valves Start here exercise 1 page 84 Check your answers. # 7 Specifications 1 Dimensions #### Task exercise 9 page 53 #### Student B Answer Student A's questions about the Akashi-Kaikyo Bridge. 2 Then change roles. Ask Student A questions about the Rion-Antirion bridge. Complete your specification chart. | Rion-Antirion Bridge: s | pecifications | |-------------------------|---------------| | Type of structure | Cable-stayed | | Country | | | Piers (number) | | | Span (length) | | | Deck (above water) | | | Deck (length) | | | Deck (width) | | | Pylon (above deck) | | # 8 Reporting # 2 Damage and loss ## Task exercise 9 page 61 #### Student B - Answer Student A's questions about the damage to your car. - 2 Then change roles. Now ask Student A questions about the damage to their car. Turn back to page 61. Label your diagram. # 9 Troubleshooting2 Hotline Task exercise 8 page 71 #### Student A Find out all the differences between your wiring diagram and your partner's. Hint: there are at least ten differences of (a) location of sockets and (b) wiring connection. #### USEFUL LANGUAGE digital receiver, DVD, VCR, TV, antenna, SCART socket, RF socket, in, out, power, socket Do you have a/an ... ? Look at the ... ? Where is the ... ? Does the ... connect to the ... ? Have you connected the ... to the ... ? Is the ... connected to the ... ? # Unit 12 Checking and confirming 3 Progress Task exercise 5 page 95 #### Student A It's 8th August. Answer Student B's questions about your chart. | Task | August | | | | | | | | | | | | |------------------------------------|--------|---|---|---|---|---|---|---|----|----|----|----| | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | Dismantle old water system | | | | | | | | | | | | | | Assemble new water system | | | | | | | | | | | | | | Install water system | | | | | | | | | | | | | | Test equipment for third spacewalk | | | | | | | | | | | | | | Take video of damaged nose cap | | | | | | | | | | | | | | Inspect damage to waste tank | | | | | | | | | | | | | | Assemble new robot arm | | | | | | | | 1 | | | | | | Attach new robot arm | | | | | | | | | | | | | B: Have you dismantled the old water system yet? A: Yes, we have. B: When did you complete the job?